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PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the
Strategic Defense Initiative Organization (SDIO), under contract MDA 903 89 C 0003,
Subtask Order T-R2-597.21, "SDS Test and Evaluation." The objective of the subtask is
to assist the SDIO in planning, executing, and monitoring software testing and evaluation
research, development, and practice.

In support of this objective, IDA identified several Strategic Defense Initiative
(SDI) software testing requirements and examined the state of the art and practice in this
field. Deficiencies were found between needed Strategic Defense System (SDS) capabili-
ties and the expected available technology. The subject of this paper is a high-level
description of a research and development initiative that addresses deficiencies in
required SDS software testing technology.

This paper was reviewed by the following members of IDA: Robert Atwell,
James Baldo, Michael Bloom, Dennis Fife, Karen Gordon, Audrey Hook, Richard
Ivanetich, Terry Mayfield, and Richard Wexelblat.
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EXECUTIVE SUMMARY

The ability to develop and demonstrate sufficient confidence that Strategic

Defense System (SDS) operational software can achieve its mission objectives has been

identified as a key technical issue many times throughout the program's history. An

activity that contributes to establishing system confidence is software testing. Complicat-

ing SDS software characteristics and the current inadequate state of software testing

practice combine to pose a significant challenge in building the SDS. This paper

describes a plan to develop software testing capabilities that must be available prior to an

SDS Milestone II decision.

Historically, 50% to 80% of the cost of software development is spent in testing.

There is no reason to expect that testing will play a lesser role in SDS software develop-

ment. Testing technology must do more than simply identify softwae defects. It must

provide the Strategic Defense Initiative Organization (SDIO) with the ability to:

a. Relate the effect of latent software defects to the operational fitness of SDS

software in order to assess the probability that the SDS will achieve its mission.

b. Determine what level of testing to perform and provide the information needed to

control the testing process.

This report concludes that conventional testing methods sufficient for small-scale

sequential software will not be adequate for testing SDS software. These methods are

largely ad hoc and unlikely to scale up to the levels required by the SDS. Existing

state-of-the-art techniques must be evaluated and inserted into use as appropriate. Furth-

ermore, the real-time, concurrent, distributed, and fault-tolerance characteristics of SDS

software compound the traditional challenge of testing. Here there is little technology

ready for evaluation and transition, and ongoing research efforts must be supported.

vii



SDIO cannot rely upon other organizations to produce the technology needed to
test SDS software. The Department of Defense is funding virtually no research, demons-
tration, or transition efforts in this area. While the National Science Foundation is fund-
ing a few research projects related to SDS testing needs, its effort is minimal. This report
recommends that SDIO sponsor a software testing initiative. Such an initiative would
span 5 years and cost on the order of 20 million dollars. The activities in this initiative
would consist of research and development projects, experiments to evaluate promising
technology, and the transition of proven technology into practice. The initiative cannot
be performed independently of other SDIO activities. Instead, it must be closely tied to
near-term SDS software development efforts to demonstrate the capabilities of testing
technology prior to a Milestone II decision. Since the lead time to produce effective test-
ing techniques and the tools to support them will be between three and eight years,
appropriate action must be taken now.

This report describes the software testing initiative at a high level. An introduc-
tion to software testing and its importance to the SDS is presented. Key aspects of SDS
software testing and the challenges in addressing these aspects is also discussed. A
description of three classes of projects needed for the initiative is provided with prelim-
inary cost and schedule estimates. The report also presents a preliminary technical
description of three sample projects representing each initiative class, and provides detail
on the technologies from which projects in the initiative can be drawn.

viii
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1. INTRODUCTION

1.1 Purpose

This paper presents a top-level description of an initiative designed to develop
critically needed software testing capabilities prior to a Strategic Defense System (SDS)
Milestone II decision.

1.2 Scope

Four key components contribute to building confidence in SDS operational
software. These are modeling and simulation, engineering discipline, software testing,
and operational evaluation (see Figure 1). Modeling and simulation build confidence in
system requirements and design decisions. Engineering discipline attempts to avoid con-
struction errors. Software testing attempts to detect errors so that they can be corrected
before a system is deployed. Operational evaluation determines how successful the other
three efforts were, but only after development is completed. This paper and the initiative
it describes focus on software testing and the underlying technologies necessary to support
its contribution to confidence.

The objectives of the proposed initiative include providing the Strategic Defense
Initiative Organization (SDIO) with the ability to:

a. Relate the effect of latent software defects to the operational fitness of SDS
software in order to assess the probability that the SDS will achieve its mis-
sion,

b. Track technology drivers; that is, assess the impact of advanced software
development technologies on the ability to effectively test SDS software, and

c. Determine what level of testing to perform and, based on the extent of addi-
tional assurance that would be gained by further testing effort, determine
when to stop software testing.

It is vital that the initiative be tightly integrated with near-term SDS software
development efforts to provide the necessary demonstration of the capability to test SDS

1



Modeling and Simulation Operational Evaluation

Threat scenarios In-line testing

Environmental effects Real-world data collection

Man in the loop testng Man in the loop

Engineering Discipline Software Testing

Formal methods Test data generation
Fault tolerant design Inspections
Prototyping Coverage metrics
Automated requirements Regression testing
and design languages

Figure 1. Key Contributors to Software Confidence

software. Development of systems such as the Level 2 System Simulator (L2SS) can also
provide highly useful and visible vehicles for illustrating the benefits of improved testing

technology to encourage its introduction into widespread use within the Strategic Defense
Initiative (SDI) community. Moreover, as technology makes transitions into SDI practice

throughout the course of the Liitiative, not only will a body of expertise in advanced test-
ing practices be established, but the quality of Phase 1 software will be increased.

1.3 Background

The ability to develop and demonstrate sufficient confidence that SDS opera-

tional software can achieve SDS mission objectives has been identified as a key technical
issue many times during the history of the SDI [Fletcher 1983, Cohen 1985, Parnas 1985].

Software testing will play a critical role in demonstrating SDS confidence.

Software testing involves the application of tools, techniques, and methodologies

to determine the presence of defects.1 These defects exist not just in code, but also in
requirements, specifications, designs, documentation and all products of the software
development process. To date, the majority of software testing research and development

1. A defect is an error in software code, design, or requirements that might cause faults. A fault is a
manifestation of a defect. A failure is a serious fault that cannot be recovered from and prevents a
system from achieving its mission.
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has focused on relatively small-scale, sequential software. Unfortunately, even this avail-

able technology is seldom applied. This was illustrated by an effort sponsored by the

Department of Defense (DOD) in 1981 to document current testing practices. This study

found a fifteen year gap between the state of the art in software testing and the state of

DOD practice [DeMillo 1987]. This gap has not closed in recent years. Moreover, tech-

niques that can cost-effectively find defects in small pieces of software typically do not

scale-up well for large systems. In addition, today's weapons systems exhibit characteris-

tics which severely complicate the testing process. Technology for testing such software

has not kept pace with the demands for this software and remains a research topic.

Testing is typically an ad hoc, labor-intensive effort only poorly supported by
automated tools. Testing is usually applied as an independent activity towards the end of
the development process to fix code that was not developed propeily. As a result, defects

are not found until long past their point of injection, resulting in rework that only adds to

the high cost of software. As shown in Figure 2, data collected during the development of

a number of early, large software systems (e.g., SAGE, NTDS, GEMINI, SATURN V,

and IBM OS/360) reveal that software unit, integration, and system testing alone

represent approximately one half of the software development effort [Boehm 1970,

Alberts 1976]. Indeed, 80% of the total software development effort was applied to test-

ing activities in the National Aeronautics and Space Administration (NASA) Apollo sys-

tem [Dunn84]. There is no reason to believe that the proportion of effort applied to test-

ing is reducing with time.

Design

25%
Requirements t C

15% 10%

Testing 0Unit
• Integration

5es% System

Figure 2. Breakdown of Software Development Activities
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2. IMPORTANT ASPECTS OF SDS SOFTWARE TESTING

Three aspects of testing technology are important to the SDI: the ability to assure
the correctness of SDS software, the types of software to be tested, and the ability to per-
form required testing within cost and schedule constraints. In this section of the report
each of these aspects, as well as the difficulties associated with them, is discussed.

2.1 Establishing the Reliability of Software

Testing will be the primary means by which confidence in the correct operation of
SDS software is gained during its development. In addition to defect detection, testing
can identify potential problems areas, focus corrective actions, and support planning of
subsequent testing activities. Testing not only addresses software functionality and per-
formance directly, but guides the application of fault-tolerance techniques to maximize
continued functionality and performance in the event of hardware and software faults,
and to ensure continued safe operation. Testing also provides valuable insight into the
appropriateness and effectiveness of development activities themselves which can be

used to fine-tune the development process.

Facing the testing challenge requires a realistic assessment of the capabilities of
available technology. Testing cannot be used to demonstrate the absence of all defects in
software [Myers 1979, pp. 9-11, Boehm 1970, pp. 25] and it is generally accepted that all
but the most trivial software will contain defects. Nonetheless, systems can be developed
that achieve their mission objectives in spite of residual software defects. What is
required is to distinguish between defects which may give rise to tolerable faults and those
which may result in intolerable faults. The primary intent of SDS software testing must be
to ensure that intolerable faults cannot occur and minimize the impact of other faults.
This cannot be achieved after the bulk of the software has been implemented. Analysis
of the overall SDS design must include assessments of the impact that software faults can
have on SDS operation. The same argument can be made for analysis of the software
system architecture and lower-level software subsystem designs to assess the potential

impact of faults in lower-level software components.

Conventional measures of software reliability, such as mean-time-to-failure, are
based on statistical modeling techniques originally developed for hardware systems.

5



There are, however, fundamental differences between software and hardware. For exam-

ple, software does not wear out or fail randomly; if software fails, given the exact same
conditions, it will produce exactly the same incorrect results again and again. Software
reliability in this sense usually means "What is the probability of conditions arising that
will make the software fail?" Hence, this is more a measure of the software's operating

environment than an independent measure of the software itself. If the environment
changes (e.g., if the distribution of inputs changes), the apparent reliability of the

software can also be expected to change.

This is part of the larger question of understanding the results of testing. It arises
because currently the only measures of testing effectiveness are indirect ones, typically
based on the proportion of the software control structure that has been executed. Conse-

quently, most testing is devoted to revealing the presence of defects, instead of their
absence. The estimated number of defects remaining in the software, the potential condi-
tions under which faults might arise, and the potential impact software faults might have
on overall system operation contribute to confidence assessment. There are techniques
for roughly estimating the number of remaining defects based on the defects already

found. These techniques need refinement to allow increased accuracy by reflecting the
number and types of tests run in finding these defects.

Meanwhile, there is reason for hope. There are a few state-of-the-art techniques
which can conclusively demonstrate the absence of particular, limited types of software

defects. These techniques provide for a high degree of confidence in certain aspects of the

software.

2.2 Addressing Problematic Software Characteristics

Conventional testing methods sufficient for simple, sequential software are not
adequate for the SDI. SDS software will be highly real-time, concurrent, distributed, and
fault-tolerant. Each of these characteristics imposes particular testing problems, as

noted in the following paragraphs.

a. Large-scale software consists of a million or more lines of source code. The
complexity of such software systems, the diversity of possible inputs they must
handle, and the potential conditions under which faults might arise increase

dramatically with the size of a system. It is futile to expect that these systems
can be tested by hand. Sophisticated testing tools are necessary to handle the

many details.

6



b. Real-time software must execute within strict time requirements and a missed

deadline is considered a fault even if computed values are correct. Conse-
quently, testing must verify timing behavior as well as functionality. Analytical
models and queuing theory can be used to analyze simple systems, but the sim-
plifying assumptions that need to be introduced as complexity increases
degrade model fidelity. As system complexity increases, it also becomes
disproportionately more difficult to establish and control test conditions under
which time-critical software must be exercised. Moreover, "invasive" testing
techniques commonly used to check function .y (e.g., executable assertions
and probes that collect coverage data during execution) can distort perfor-
mance such that the operational software cannot be examined.

c. Concurrent software consists of multiple tasks or "threads" that execute in

parallel on multiple processors or asynchronously on a single processor.
Cooperation between tasks is managed by operations that allow two tasks to
synchronize and exchange information. Defects in concurrent software
include all those that can appear in single-thread sequential programs, plus
defects in synchronization. The difficulty of testing concurrent software arises
from the indeterminism inherent in synchronization events, which means that
two executions of the same software with the same inputs may not behave
similarly. For static analysis, this results in high computation costs incurred by
the need to consider all possible synchronization sequences and the traditional
problem of determining path feasibility is exacerbated. In the case of
dynamic testing, special actions are required to enable repeating a particular
execution to aid in identifying the cause of a software fault, or to ensure the
correctness of a modification made to remove a defect.

d. Distributed software is made up of cooperating processes that execute on mul-
tiple processors separated physically and connected via communications
channels. These processes can be modeled using the same techniques used
for concurrent software. The main difference is that synchronization requires
communication between processors, which typically introduces additional
latency and uncertainty into the timing of synchronizations. This uncontroll-
able variability increases the difficulty of systematically repeating faulty
behavior. External communication channels also represent additional points
of potential failure that concurrent tasks on single processors and closely-cou-
pled multiprocessors typically do not have to address.

e. Fault-tolerant software is designed to ensure that intolerable faults cannot

occur. Tolerance of hardware failures is usually achieved by the provision of

7



redundant system components. Tolerance of software faults tends to focus on
the use of independently-developed software versions (e.g., N-version pro-
gramming), or fault detection and recovery mechanisms (e.g., recovery
blocks). Testing such software involves the introduction of hardware and
software faults in order to evaluate the response. The problem here is that the

introduced defects may not be realistic. There are also problems specific to
particular fault-tolerance techniques. For example, rigorous testing of N-ver-
sion software must include validation of the underlying assumption of the
independence of faults in each version.

The only methods in current practice for testing these types of software are ad
hoc and cannot be relied upon to scale-up to the size and complexity anticipated for SDS
software. The problems are, however, well recognized and technology to address them is
being investigated. For example, in the case of reproducing the execution of concurrent
software, basic support technology is under development which will provide a framework
in which some existing testing techniques for sequential software can be applied.

2.3 Maximizing Effectiveness to Meet Budget and Schedule

There are two avenues for increasing the effectiveness and productivity of
software testing. A significant step forward will be achieved by the provision of
automated testing tools for both software development and support. There is a wealth of
advanced prototypes that are waiting to be transformed into production-quality tools, or
to be taken from a specialized development environment to one applicable for SDS.
Rather than simply refining or rehosting available prototypes, careful planning for tool
packaging would offer even greater improvements in productivity. For example, many
testing techniques have common processing elements, such as an initial static analysis
pass, to build an internal representation of the software under test. Productivity in testing
activities can be increased by separating out these common elements into individual tool
fragments so that the initial static analysis need only be performed once for each version

of the software, instead of once for each application of each dynamic testing technique.
Tool fragments can also increase productivity in tool production since each tool fragment
only need be developed once.

Tools must be integrated with the planned SDS Software Engineering Environ-
ment (SEE). At the very least, a set of basic testing utilities such as tests drivers,
debuggers, instrumentors, and coverage monitors must be provided. These utilities will
form a common framework in which all testing will be performed, and with which addi-

tional tools must interface appropriately.

8



A second avenue for increasing the software testing effectiveness and produc-

tivity involves the cost effectiveness of available testing techniques. One of the classic

questions that remains unanswered by current software testing technology is, how much

testing is needed? Related questions include which techniques should be applied and to

what extent? Testing budgets and schedules are typically based on experience gained in

building similar systems and, all too often, testing simply stops when the budget or

schedule so dictates. The effectiveness of various software testing techniques range from

detecting all instances of particular, narrow but well-defined classes of defects (e.g.,

100% of parameter type defects), to detecting smaller percentages on wider ranges of

defects (e.g., 60 to 90% of all defects via inspections). A thorough understanding of the

cost effectiveness of available techniques, including areas where techniques overlap, is

needed to adequately plan and control testing activities for SDS software.

Theoretical approaches to the effectiveness of particular testing techniques are

being pursued, but are unlikely to yield practical results in the next five years. In the

meantime, data collected from the demonstration of techniques on near-term SDS

software efforts will go a long way to resolving this shortcoming. This data will facilitate

the establishment of cost effectiveness profiles and their refinement prior to Full Scale

Development (FSD).

9



3. DESCRIPTION OF AN SDIO SOFTWARE TESTING INITIATIVE

This section of the paper describes three main classes of projects that the initia-
tive will include. The costing for these projects is discussed, as well as the schedule for
the initiative and methods for funding. Finally, as this paper does not provide all of the
information necessary to plan and develop the initiative, a description of additional
required work is presented.

3.1 Classes of Projects

Projects in the initiative can be broadly classified into three main classes. First,
technology transition projects will emphasize the building of robust, production quality
tools; training in the technology being inserted; and development of methods for moving
the technology into the SDI state of practice. Production quality tools will reduce the
amount of labor involved in the testing process, in addition to increasing software quality.
Such tools will be identified as a part of the initiative, and then competitively procured.
Training in the technology being inserted can be accomplished by those currently within
the SDI community. It may take the form of instruction in the use of a tool or establishing
guidelines for the use of non-automated testing techniques. Small-scale demonstration
projects will be used to emphasize the benefits to be gained from new technology. Exam-
ples of topics for transition are:

a. Formal software inspections applied to requirements, designs, code, and test

plans and test cases. Inspections have been proven in practice to be capable of
finding 60% to 90% of software defects, while reducing total development

costs by hs much as 25% [Fagan 1986]. While many software developers do
use some kind of structured review techniques, the rigor necessary to achieve

these types of benefits is rarely applied.

b. Basic support for dynamic analysis of sequential code products at the unit and
integration levels. Test drivers, debuggers, instrumentors, coverage monitors,
and profilers are required to support all dynamic testing. While independent
examples of each of these tools are available, their inclusion as an integrated
set of basic testing utilities in the SDS software engineering environment will
greatly facilitate testing effectiveness.

11



c. Alternative criteria for control flow testing of sequential code products. The
only test data adequacy criteria in current use reflect the coverage of all pro-
gram statements, branches, or paths by test data. Additional criteria reflect-
ing coverage between the weak all-branches and the infeasible all-paths cri-
teria will support better assessment of the effectiveness of dynamic testing.

Second, evaluation projects will focus on promising technology not yet demon-
strated as cost effective on large systems. Technology of interest here includes the follow-
ing:

a. Fault tree analysis applied to sequential, concurrent, and distributed designs
and code. Identifies potential safety-related faults to guide the placement of
fault-tolerance techniques and critical areas for additional testing focus.

b. Interface analysis for sequential design and code products. Allows increasing
software confidence by demonstrating the absence of specific types of defects
by analyzing the consistency and completeness within and among system com-
ponents.

c. Intra and interprocedural data flow testing applied to sequential code. Pro-
vides additional measures of test data adequacy that is more defect discrim-
inating than traditional control flow based measures.

d. Symbolic evaluation of code products. Serves as an independent static
analysis technique as well as providing capabilities such as path analysis to
support other testing activities.

e. Control flow testing for concurrent code products. Provides basic measures of
test data adequacy to assess the effectiveness of dynamic testing of concurrent

software.

Evaluation projects will require the development of prototype tools, techniques,
and methods and the conduct of experiments to assess the cost effectiveness of various
methods. They will require contact between the intended user of the technology and the
demonstrator/evaluator of the technology. The user would be from an SDS development
project, such as the L2SS, or other representative DOD software development. The
demonstrator/evaluator would be from an organization possessing the resources to
develop or modify small-scale prototype tools, having access to experts involved in the
development of the technology, and familiar with combining these functions into a com-
plete project.
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Finally, research and development projects will strive for practical rather than

theoretic solutions to the special problems of testing large-scale, real-time, distributed,
concurrent and fault-tolerant software. Sample technologies in this case include:

a. Animation of requirements products. Allows a developer to gain insight into

required behavior to support validation. Also useful for providing feedback on

the interplay of design elements and operation of code.

b. Behavior analysis of concurrent and distributed code products. Supports use
of self-checks to identify anomalous behavior both during testing and software

operation.

c. Deterministic execution testing for concurrent and distributed code products.

Supports reproducing an execution of parallel software to allow diagnosing

the cause of a fault, or retesting software after it is changed.

d. Performance analysis of concurrent and distributed designs. Facilitates

predicting software performance attributes to allow designers to make timely

decisions about design alternatives.

e. Regression testing of modified code products. Minimizes the expense of

retesting modified software by careful reuse of previous tests.

f. Static concurrency analysis of concurrent and distributed code products.

Allows determining the presence and, in some cases, absence of synchroniza-
tion faults such as deadlock.

g. Timing analysis of real-time, concurrent, and distributed design and code pro-

ducts. Supports comparison of expected and actual timing behavior against

required behavior.

A preliminary technical description of three sample projects which represent

each class is given in Appendix A. Appendix B provides more detail on the above men-

tioned technologies and some of the other technologies from which projects can be drawn.
Additional information on the state of the art in software testing can be found in [Young-

blut 1989].

3.2 Cost

Detailed cost planning for the initiative should include consideration of factors

such as the criticality and status of technology, limits on how funding can be spent effec-

tively, coordination opportunities within the SDI community, and the amount of available
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funding. Prior to thorough planning, only rough cost estimates can be given. These are

based on 1) a general understanding of what types of tasks will be necessary to address

the SDS software testing aspects described in the previous section, 2) the Lvel of effort

required for each project type, and 3) a sense for the number of projects that could be

funded effectively. Table 1 summarizes estimates developed in their study These results

are used primarily to convey the order of magnitude of needed funding and its distribution

among the classes of projects.

Table 1. Initiative Cost Data

Number of Type of Avg. Cost Total

Projects Project Per Project

40 Research and development projects $150K $6.OM
20 Technology evaluation projects $450K $9.OM
15 Technology transition projects $300K $4.5M

$19.5M

The estimate of $150,000 per research project used in Table 1 is based on recent
National Science Foundation (NSF) data. The NSF funds almost all government sup-

ported research in software testing. In 1988, only $600,000 was spent on projects in the
area of software testing and fault-tolerance [NSF 1988], although related projects were

funded in areas such as requirements specification, tool development, distributed com-
puting, and formal verification. In the area of program testing, NSF awards average
about $100,000, and range in duration from 1 to 3 years. The number of projects, 40,
emphasizes the need for development of testing technology, much of which is currently in
the research domain.

The estimate of $450,000 per technology evaluation project is based on past
demonstrations and experiments with testing technology. Little software testing technol-

ogy has been applied on actual development projects. Thus, there is a shortage of quanti-
tative evidence on the effectiveness of promising tools, techniques, and methods.

Demonstrations and experiments to provide this data will be performed during develop-

ment of SDI testbeds (e.g., the L2SS and the Communications Network Testbed) and ele-

ment software. Some projects will likely require multiple independent developments of
the same software to produce statistically significant data. Developers will be trained in

the use of the tool/technique that is being examined. Academic researchers will assist in

developing experiments. In addition, an organization or group of people will be identified
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as the focal point for each experiment. All of these factors will impact the cost of an

experiment.

The estimate of $300,000 per technology transition project is based on continuing

the work of evaluation projects by identifying cases where proven tools can be inserted

into SDIO use. Production quality tools must be developed. The existence of such tools,

however, does not guarantee their use and real world data will be collected showing SDI

program managers how the technology can benefit them.

3.3 Schedule

Without a detailed analysis comparing SDS sctware testing requirements against

projections of what the research community could provide, it is difficult to develop any

realistic schedules. However, two factors are assumed in this paper. First, the SDI Mile-

stone II decision will occur in the 1995 timeframe and the majority of results should be

known or accomplished by this time. Care will be taken to facilitate a continual infusion

of technology into SDIO use throughout the initiative. Second, the type of projects

described in the initiative are multi-year efforts, many of which will build upon the results

of the previous efforts. Thus, for planning purposes, a 5-year time span for the initiative

is used.

3.4 Funding

Given the breadth of project types within the initiative, a variety of programmatic
funding issues arise. These issues include the methods used to fund and monitor indivi-

dual projects, SDIO involvement in the initiative, and the oversight needed to ensure the

appropriate coordination, selection, and evaluation of projects. For example, some of

the research projects will require grants to the academic experts who are best qualified to

produce useful results in a timely fashion. While national laboratories, service labora-

tories, and various government agencies have provided funding for research in the past,

NSF is by far the most experienced organization in handling long-term research and

possesses the infrastructure necessary to ensure successful direction of research funds. It

is recommended that SDIO develop a cooperative agreement with NSF to assist in

obtaining effective research towards fulfillment of SDS testing requirements.

In the case of evaluation projects, organizations such as the national and service

laboratories, NASA, the Software Technology for Adaptable, Reliable Systems (STARS)

program, and the Defense Advanced Research Projects Agency (DARPA) can assist

SDIO by providing candidate projects whereby testing technologies can be evaluated.
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However, it must be noted that SDIO cannot rely upon other organizations to produce the
technology needed to test SDS software. For example, while NSF is funding a few
research projects related to SDS needs, its effort is minimal. In general, the DOD is
funding virtually no research, demonstration, or transition efforts in software testing.

3.5 Next Steps

Three primary tasks are required to fully define the initiative. First, criteria must
be developed to identify those technologies of immediate interest to SDS and clearly rule
out areas not applicable or useful. These criteria will form the basis for a comprehensive
examination of promising technology. A prioritization of promising technology will be
prepared in cooperation with support from industry and academia to determine current
research focuses.

Second, the projects comprising the initiative will be selected. For the evaluation
projects, candidate SDIO (or other DOD) projects must be identified to provide a testbed
for evaluation. As these types of projects are tied to programmatic plans, evaluation pro-
jects will require careful coordination.

Finally, as the initiative will be managed by SDIO, detailed planning identifying,
for instance, funding agents (e.g., NSF, Service R&D agencies, and SDIO) and
schedules for each project must be developed. Coordination with other agencies is also
needed. For example, the Office of Naval Technology (ONT) and NSF are currently
exploring a collaborative software testing technology effort. SDIO should keep abreast
of such activities and identify opportunities to cooperate with those efforts.
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APPENDIX A: SAMPLE PROJECT DESCRIPTIONS

This appendix describes three sample software testing technology projects. The
descriptions convey the type of projects needed in areas of technology transition, demons-
tration of promising technology, and research and development.

A.1 Transitioning Software Inspection Technology into Practice

A.1.1 Introduction

This section outlines a project for increasing software quality and reducing
development costs by transitioning software inspections into SDIO-wide practice. The
longer software defects remain undetected, the more expensive they become to correct.
For example, the correction of a requirements defect during coding activities may incur
70 times the cost of correcting that same error during requirements specification [Dunn
1984]. Unfortunately, the types of static and dynamic analysis techniques used to detect
code defects are rarely applicable to requirements and design products. Consequently,
these defects are difficult to detect and a prime contributor to the high cost of software
development and subsequent corrective maintenance. Since inspections can be applied
at each stage of software development, they provide for timely defect detection and can
be expected to yield significant savings in development and maintenance costs.

In the case of SDS, the expected use of real-time, concurrent, and fault-tolerant
software will exacerbate and extend the usual difficulties in testing requirements and
design products to code products. Software inspections are one of the few techniques that
can be used for testing critical software of this kind.

The following section provides a brief overview of software inspection technology.
The final section describes the necessary project steps, along with their associated

estimated schedules and costs.

A.1.2 Background

Software inspections are a manual formal review technique. The software inspec-
tion process was developed in 1972 by Michael Fagan at IBM Kingston, NY [Fagan
1976]. Inspections can be applied to all types of software products, regardless of
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implementation issues such as real-time or concurrency. This allows inspections to be per-

formed much nearer the point of injection of defects than most other forms of testing and,

therefore, requires less resources for rework following the detection of a defect. In terms

of defect detection, inspections have proven to be capable of finding 60-90% of software

defects [Fagan 1986]. In practical development efforts they have been found to reduce

total development costs by as much as 25%, and have actually resulted in the delivery of

defect-free software.

One of the fundamental concepts for the inspection process (usually lacking in

practice) is the definition of the software development process in terms of activities and

their exit criteria. The purpose of an inspection is to verify that the output product of each

activity satisfies the activity's exit criteria; essentially exit criteria define the output

requirements of an activity. They are the standard against which inspections measure

completion of the product at the end of an activity, and verify the presence or absence of

quality attributes. The inspection process itself comprises six well-defined steps. The first

three (planning, overview, and preparation) proceed the actual inspection. The final two

(rework and follow-up) focus on correcting defects found in the inspection and ensuring

that bad fixes are not included in a product. Participants in inspections play well-defined

roles as author, reader, tester, and moderator.

The inspection process is well understood. Studies have isolated its key charac-

teristics and fostered improvements such that inspections may routinely yield a very high

defect detection efficiency. In [Fagan 1986], Fagan reports these improvements in the

inspection process, along with data which demonstrates the value of software inspections

in increasing software quality while reducing software costs. He also provides a me isure

for the defect detection efficiency of inspections. Statistical analysis and empirical data

have revealed the prime contributors to inspection quality and indicators of quality

inspections have been developed. This allows management to influence the quality, and

the development and maintenance costs, of inspected products.

In addition to timely defect detection, there is substantial empirical evidence of

many other benefits from the software inspection process. It promotes defect prevention

by providing feedback that helps programmers to avoid making errors in future work.

When applied to test plans, it provides a mechanism for improving the defect detection

efficiency of other forms of testing. In the case of code products, there is a directly pro-

portional relationship between the inspection detected defect rate and the defect rate

found in a piece of code by subsequent testing. This allows inspection results to be used to

identify defect prone code which requires special handling. Since exit criteria are the

standard against which inspections measure completion of the product at the end of an

activity, inspections provide checkpoints which facilitate process management. Finally,
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although not to be used for performance measurement of software developers themselves,
the inspection process provides data useful for performance measurement of tools and
techniques in individual development activities. Indeed, with respect to inspections them-
selves, inspection results initially should be analyzed to drive process improvement. Once
a stable point is reached, results should be used for process control.

A. 1.3 Description of Project

Experience has shown that a positive philosophy and set of attitudes is essential
for the successful transition of any technology. Consequently, this project shall start with
a demonstration of software inspections on an SDS software development effort. The
results of this demonstration shall be widely disseminated among the SDIO community to
encourage a good reception to required program-wide use of inspections. The subsequent
activities required to introduce inspections into SDIO-wide usage shall exploit any lessons
learned from the demonstration.

Step 1: Demonstration of Software Inspections. The inspection process shall be applied
on a near-term, relatively short SDIO software development effort. The purpose
of this application shall be to provide a highly visible vehicle for demonstrating
the practical benefits of the inspection process. Candidate show cases should be
selected on the basis of several characteristics, for example, their visibility to
the SDIO community, the likelihood of timely results, and the breadth of inspec-
tion benefits that can be demonstrated. Since inspections are well proven in
practice, their use is not anticipated to impose significant risk to the demonstra-
tion effort. The L2SS Build 1 is one example of a suitable candidate.

Prior to demonstration, project managers will be provided with 1 day of training
in the operation and effects of inspections. In general, software engineers will
receive 1 day of training for inspection participants, 5% of the software
engineers, however, will receive 3 days of training in moderating inspections'. An
expert in software inspections will support the development organization in
defining their software development process and the associated exit criteria and
defect checklists. The development organization will also be provided with a
defect reporting system (ideally, this will be an automated system) and training
in the use of this system. Requirements for data collection above that provided
by the defect reporting system will be defined and, again, the development
organization provided with any necessary tools and training. Since the chief
objective will be to demonstrate the cost-effectiveness of inspections, rather
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than compare inspections against other forms of testing, these additional data
requirements should be minimal.

The inspection expert should be available on call to assist with any problems
that may arise. This expert should also make periodic visits to the development
effort to ensure that the demonstration is going as planned and to validate sam-
ple portions of the data being collected.

Interviews with representative participants will be conducted once the demons-
tration is completed to provide information on the human reaction to the inspec-
tion process. Accumulated defect reports and other collected data will be
analyzed to determine the degree of defect detection efficiency achieved by the
inspections. Where information is available from previous software develop-
ment efforts performed by same organization, the extent of achieved quality and
productivity improvements will be assessed. This information will be extrapo-
lated to estimate the benefits of software inspections for the development of
SDS software as a whole. As appropriate, various mechanisms may be used for
the dissemination of demonstration results through the SDIO community. Exam-
ples of such mechanisms include briefings at SDIO conferences and memos to
project managers and other suitable people.

The commencement of this step will depend upon the selection of a near-term
SDS software development effort as a suitable demonstration vehicle. After the
necessary set-up, the demonstration shall proceed in parallel with the chosen
development effort. Data collection shall terminate with the completion of
inspections on integration and system testing plans and cases, or inspections on
code products, whichever is later. This step can be conducted independently of
any other testing efforts. The cost of this step will include (1) costs incurred by
the development organization who will be applying inspections (training costs,
set up costs, and data collection costs), and (2) costs incurred in data analysis
and dissemination of demonstration results.

Step 2: Bringing Inspections into Common SDIO Practice. Education has been found to
be the key prerequisite for transitioning software inspections into practice. Con-
sequently, a training program for managers, inspection moderators, and other
inspection participants shall be established.

Organizations preparing to use inspections for the first time shall be provided
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with guidance to help in defining the organization's software development pro-
cess and the accompanying exit criteria. Guidance is also required for develop-
ing checklists for each type of product to be inspected, together with the estab-

lishment of a process for continually refining these checklists based on inspec-
tion results. Ideally, initial checklists will be based on available quality control
information such as the identification of frequently occurring errors. Although

inspections themselves require no automated support, identified defects should
be entered into a defect reporting system. Finally, guidance in establishing a
database which shall record inspection results so that they may be used for qual-

ity control purposes and to support assessment of the effectiveness of the inspec-
tion process itself shall be provided.

Management should guide the application of inspections in the planning of a

software development effort. For example, one typical effect is a slight front-
loading in the commitment of people resources for software development. Gui-
dance for exploiting inspection results to facilitate development process control

shall also be prepared. Finally, the policy necessary to support the introduction
of inspections on a consistent, SDIO-wide basis shall be drafted.

This step can commence on the completion of the demonstration step above. It
should be coordinated with the introduction of a formal defect reporting system.
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A.2 Development of a Data Flow Testing Tool
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A.2.1 Introduction

This section outlines a project to develop, and demonstrate, a production-quality
tool for the application of data flow testing to Ada software. Current testing practices are
insufficient for a critical application such as the SDS which must operate successfully on
its first activation. Available statistics indicate that 54% of all defects are not found until
acceptance testing or later [Boehm 1975]. Indeed, the software community has been
unable to identify a single major application that operated correctly on its first use. One
of the objectives of data flow testing is to increase software reliability by increasing the
detection of software defects during unit and integration testing.

Regardless of the effectiveness of available testing techniques, the cost of current
testing practices pose a significant problem for the SDS. The Air Force Systems Com-
mand has reported that approximately 50% of software development costs are typically
spent in unit, integration, and system testing alone. The major proportion of these costs
are incurred by the human-intensive activities of selecting test data and examining test
results required for dynamic testing of code products. This problem is exacerbated by the
difficulty of determining when to stop testing. In theory the ideal stopping point is when
the software is defect-free. However, because current dynamic testing approaches are
based on detecting the presence of defects, rather than their absence, there are no abso-
lute measures for this point. Instead, indirect measures of test data adequacy based on
the proportion of the control structure of a program that has been exercised are used.

Data flow testing will help to reduce testing costs by supporting the automated generation
of test data, providing test data adequacy measures based on data flow, and allowing easy
determination of the minimum set of tests needed to verify the implementation of a
software modification.

A brief overview of data flow testing technology is provided. This is followed by a
description of the necessary steps for the project, supported by schedule and cost esti-

mates.

A.2.2 Background

Data flow testing is a dynamic analysis technique that embodies a set of criteria
that can support both test data generation and the assessment of test data adequacy

[Frankl 1988]. These criteria reflect the intuition that the path from a variable assignment
to its use must be executed to provide confidence that the correct value was assigned to
that variable. They provide better support for automated test data generation than cri-
teria based on control structure [Ural 1988]. They are also more discriminating; for exam-
ple, Girgis reports that the all-c-uses criterion could detect 48% of faults and all-p-uses
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could discover 34%, giving a total of 54%-70% for these two data flow criteria, while all-

branches only could detect 34% [Girgis 1986]. The selectivity of criteria is another per-

tinent issue. Selective criteria are those which never require more, and may require less,

test paths to achieve some testing goal. While data flow criteria are not more selective

than control flow criteria in general, they are more efficient for some practical testing

goals, namely, with respect to the selection of simple transference paths, and differentia-

tion from constant values [Zeil 1988].

Data flow testing is based on the data flow analysis originally used in compiler

optimization. Initially, data flow analysis only examined the data dependencies that exist

within a program unit; this is termed intraprocedural testing. Recently, algorithms for

analyzing data dependencies that exist between program units have been developed, sup-

porting not only interprocedural data flow testing, but also more accurate intraprocedural

testing [Harrison 1989]. Incremental data flow analysis has been another focus of recent

research. Here the objective is to reduce the cost of maintenance activities, which

currently are estimated to consume 30-80% of the total cost of a system, by controlling the

scope of retesting needed after a software change has been made. Data flow analysis can

be used to identify the changes in program paths from the definition to the use of a vari-
able that result from a modification and, thus, limit retesting to only the modified and new

associations. Figures on the time and space complexity of such incremental data flow test-
ing are given in [Taha 1989].

A.2.3 Description of Project

Development of a production-quality data flow testing capability shall consist of

three steps. It should be noted that there are several data flow testing prototype tools in

existence. The developers of the key prototypes shall be encouraged to share their experi-
ence in the form of "lessons learned." In particular, the Ada-based prototype recently

developed as part of the Testing, Evaluation, and Analysis Medley (TEAM) 2 project

shall be carefully examined to determine whether there are existing tool fragments that

can be exploited for the current effort.

Step 1: Develop Tool Specification. Develop a detailed specification of the desired
functional and performance capabilities of a production-quality tool that sup-
ports the incremental application of data flow criteria for both test data genera-

tion and test data adequacy evaluation for Ada software at the unit and

2. This project is being undertaken by the Arcadia consortium which is headed by the University of
Massachusetts and the University of California at Los Angeles.
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integration levels. This requires the resolution of several issues. One such issue
is how higher quality test data should be traded-off against the difficulty of accu-

rate data flow analysis. This requires, for example, determining whether array
references will be disambiguated and what degree of infeasible path elimination
will be provided. Not all tool issues can be resolved through consideration of

data flow testing in isolation. For example, many testing techniques have com-

mon processing elements such as an initial static analysis pass to build an inter-

nal representation of the software under test. Productivity in testing activities

can be increased by separating out these common elements into individual tool
fragments so that the initial static analysis need only be performed once for each
version of the software, instead of once for each application of each dynamic

testing technique. Tool fragments can also increase productivity in tool produc-

tion since each tool fragment only need be developed once. The specification
shall detail the required use of tool fragments.

The specification shall provide a quantifiable basis for monitoring the tool
development effort and assessing its results. Additionally, it shall specify

requirements for data collection to support cost-effectiveness analysis of the
implemented technology.

This task can commence immediately. It can be conducted independently of any
other testing efforts.

Step 2: Implement Tool and Integrate into SEE Testing Support Toolset. The tool shall

be implemented in accord with the requirements laid out in the SDIO Directive
3405, Software Policy. The final products shall be integrated into the basic test-

ing support toolset as appropriate (see Section B.2). In particular, the instru-
mentor and coverage monitor shall be extended to facilitate the use of data flow
test data adequacy criteria, and the test driver shall support execution of tests
employing the outputs of a data flow test data generation component. Appropri-

ate support for data collection to support cost effectiveness analysis of data flow
testing shall be provided.

This step may commence once the tool specification becomes available. it must

follow, or be carefully coordinated with, the development of SEE basic testing
support toolset.
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Step 3: Evaluate Products Via Application on SDS Development Effort. The products
of the implementation step shall be applied on the coding and unit test and the
integration phases of a near-term SDS software development effort. This
evaluation exercise shall serve several purposes. For example, it serves as a
demonstration vehicle for data flow testing preparatory to introducing this tech-
nology into SDIO-wide use. It shall also allow the collection of data on the prac-
tical cost/effectiveness of data flow testing as implemented. The users of the
technology shall be trained in the application of data flow testing, use of the
automated support, and necessary data collection. Expert assistance shall be
made available throughout the course of the demonstration. On completion of
integration testing activities, the data collected shall be used to develop decision
criteria that aid in the selection of the most appropriate data flow criteria for
particular development efforts.

The evaluation step must be coordinated with a suitable SDS software develop-
ment effort. Such an effort should be relatively short, and be highly visible to the
SDIO community. It will last through the code and unit test and the integration
phases of the chosen development effort.
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A.3 Research Into Deterministic Execution Testing and Debugging

A.3.1 Introduction

This section outlines a project to determine the feasibility and cost-effectiveness

of applying deterministic execution testing to concurrent Ada software. Dynamic analysis

is the predominant -'e " tct detection method for concurrent software, that is, software

designed as parRLle! processes executing on a single processor, multi-processor, or distri-

buted processor. While 35-50% of programmer effort is spent in defect removal for

sequential software, the difficulties in testing concurrent software necessitate significantly

more effort [Dunn 1984].

The prime cause of difficulties in the dynamic analysis of concurrent software is

the inherent execution indeterminism, which means that two executions of the same

software with the same inputs may behave differently. Consequently, the traditional

dynamic approach of executing a program once with each input can fail to detect many

concurrency-related defects. Moreover, an execution which does reveal a defect cannot

be repeated to facilitate determining the cause of that defect and, subsequently, to ensure

that it was corrected properly. Deterministic execution testing provides a way to capture

the synchronization behavior of a concurrent program and to reproduce this behavior as

necessary. As such, it provides a foundational framework for concurrent software test-

ing, particular test data generation, and test data adequacy assessment schemes that can

then be employed within this framework. To this end, this technology should, ultimately,

be included in the SDS software engineering environment (SEE) basic testing support

toolset.

The following section provides a brief technical overview of deterministic execu-

tion testing. The final section describes the steps necessary to develop prototype tools and
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investigate some outstanding technology issues.

A.3.2 Background

Deterministic execution testing is based on the concept of SYN-sequences [Tai

1989]. A SYN-sequence is the set of synchronization events that occur in the execution of
a concurrent program and allows unambiguous specification of that execution. A feasible

SYN-sequence is one that can be exercised during an execution of a program P. A valid

SYN-sequence is one expected to be exercised according to the specification of P. Tai has
developed a formal definition of correctness for concurrent programs which forms the
basis of deterministic execution testing; in essence, if the validity of feasible SYN-
sequences is not examined, some synchronization defects will not be detected. The basic
elements of deterministic execution testing are SYN-sequence collection, determining

SYN-sequence feasibility, and forcing SYN-sequence replay.

SYN-sequence collection is achieved by transforming a program P into an

equivalent program P', except that during an execution of P' the SYN-sequence of this
execution is collected. Determination of SYN-sequence feasibility starts with transform-

ing P into another equivalent program P* which will produce the same results as P if the

SYN-sequence is feasible. This second transformation introduces a special control task
and causes each rendezvous event to be replaced with entry calls to this task. The control
task reads in a SYN-sequence that comprises a sequence of entry call arrivals and rendez-
vous events such that arrivals of entry calls occur as late as possible (LAR-sequence). It
then tries to force the given LAR-sequence to be exercised by returning from entry calls
when the next event to occur in the given LAR-sequence is the execution of a rendezvous

event by the task. If the sequence is feasible, P* issues a completion message indicating

that the sequence was exercised and P* terminated as expected. Otherwise, P* issues
either a timeout message indicating that the time interval between the most recent syn-
chronization events and the current time is longer than that allowed, or an unexpected
event message occurred. SYN-sequence replay forces execution in a similar way SYN-
sequence feasibility determination, although here the SYN-sequence can be simplified.

Deterministic execution testing is still under development. It is, however, a funda-

mental technology for effective testing of concurrent software that is critically needed.

A.3.3 Description of Project

This project is, potentially, the first in a series of projects designed to bring deter-
ministic execution testing into SDIO practice. It requires consolidating existing
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technology and experience in distributed execution testing to evaluate its near-term feasi-
bility and potential cost effectiveness. These investigations shall result in a set of recom-
mendations for productization of the basic technology, and for any necessary additional
research into outstanding technology areas.

Step 1: Develop Prototype Tools. Evaluation of the feasibility of deterministic execu-
tion testing shall be based on the development of prototype tools applying SYN-
sequence collection, feasibility evaluation, and replay to concurrent Ada
software operating on single, multi-, and distributed processors. These proto-
types shall be applied to available real-world software to assess the likely cost-
effectiveness of this technology

The step can begin now. It can be performed independently of any other testing
efforts.

Step 2: Investigate Integration of SYN-Sequence Replay with Debuggers. In 6rder to
achieve the maximum benefit of SYN-sequence replay for debugging concurrent
software, debugging techniques should be directly integrated with deterministic

execution testing. In point of fact, SYN.sequence replay tools may need to be
integrated with several debuggers, since there are significant differences
between debugging concurrent software operating on a single processor, a mul-
tiprocessor, or distributed processors. For example, one of the major difficulties

in debugging distributed software is the need to halt all processors simultane-
ously. Moreover, such a debugger may be centralized or itself distributed among
the various machines. This step shall integrate the prototype SYN-sequence

replay tool with sample available debuggers for concurrent software.

This task will proceed in parallel with step 1 above. It can be conducted
independently of any other testing efforts.

Step 3: Investigate Support for Incremental Testing. A significant portion of software

costs are incurred in retesting software after it has been changed. The identifica-
tion of new or modified SYN-sequences can be used to determine the actual
scope of a change and so reduce the cost of retesting by limiting it to the affected
parts of the software. The prototype tools shall be extended to support the iden-

tification and execution of new or modified SYN-sequences.
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This task will proceed in parallel with Step 1 above. It can be conducted

independently of any other testing efforts.

Step 4: Investigate Support for Target-Host Reproducibility. Process-control or embed-

ded software is often developed on a host machine which provides the develop-

ment support not available on the intended target machine. While the majority

of testing occurs on the host, some testing must also be performed on the target.

If defects are detected during target testing, there may be no facilities to support

diagnosing the cause of the defect. This step shall involve determining the feasi-

bility of modifying the prototypes to develop tools capable of reconstructing an

erroneous target execution on the host machine [Taylor 19821.

This task will proceed in parallel with steps 1 through 3 above.
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APPENDIX B: SOFTWARE TESTING TECHNOLOGY HORIZON

This appendix provides an overview of the current state-of-art in software testing.
It provides a series of descriptions on selected technology areas. While by no means
addressing all possible topics, it illustrates how state-of-art technology might benefit the
testing of SDS software. As can be seen, each area may contain technology ready for
transition or evaluation and demonstration, and needed research. Consequently, there is
not necessarily a one-to-one mapping between technology areas and potential projects in
a testing initiative.

There are some general points that apply to all the technology areas, or all
instances of one type of initiative project. For example, quantitative data on the cost-
effectiveness of each testing technique is urgently needed. This data would support both
test planning and the monitoring and control of test activities. Additionally, it would guide
software testers so that each technique is applied appropriately under given cir-
cumstances. Every evaluation and demonstration project shall collect data to facilitate
the establishment of cost-effectiveness profiles. Where appropriate, transition projects
shall also establish necessary data collection activities so that the cost-effectiveness pro-
file of a particular technique can be extended and refined prior to FSD development.

It is important that planning for the development of tools to support testing activi-
ties shall be considered with respect to the testing initiative as a whole, not on a project by
project basis. For example, many testing techniques have common processing elements
such as an initial static analysis pass to build an internal representation of the software
under test. Productivity in testing activities can be increased by separating out these com-
mon elements into ind:t idual tool fragments so that the initial static analysis need only be
performed once for each version of the software, instead of once for each application of
each dynamic testing technique. Tool fragments can also increase productivity in tool pro-
duction since each tool fragment only need be developed once. It is also useful to concep-
tually separate basic testing utilities from specialized testing techniques. This basic testing
support toolset then forms a common framework in which all testing will be performed,
and with which additional tools must interface appropriately.
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B.1 Animation

The advent of high-resolution graphics workstations and pointing devices makes
possible the creation and display of drawings whose elements can be continuously moved
for realistic animation. At the program level, this animation provides the user with visual
feedback that both increases the user's understanding and aids in defect detection [Feld-
man 1989]. Indeed, it is becoming an integral part of the new generation of graphical
debuggers. Program data structures are animated by abstract, pictorial representations or
textual views showing the contents of variables, whereas algorithms are animated by
graphical maps of the state of the computation domain of the program. Animation of
concurrent software is subject to the usual problems arising from the indeterminism in
process scheduling. Solutions to this problem are focusing on graph-based representa-
tions that represent the full set of possible, correct event-orderings for a set of concurrent
processes. The absence of a global clock presents additional difficulties when concurrent
processes are distributed across several machines. Here an independent animation of
concurrent programs on each site may be used, or a global site-transparent animation.

Animation is also being proposed for interpretation and validation of require-
ments specifications. Current approaches include translating a specification given in a
formal language such as VDM into a logic programming language [Bloomfield 1986].
This not only facilitates animation but provides a diverse implementation for use in
back-to-back testing. Alternatively, facilities may be provided for the selection and exe-
cution of a transaction to reflect the specified behavior of a particular scenario given in
the specification [Kramer 1988]. In a broader application, animation is being investigated
as the basis for a visual paradigm capable of supporting the representation and refine-
ment of interactions among the conceptual entities in a system design [Moriconi 1983].

Experimentation with prototype tools for program animation have shown that a
visual view of the operation of concurrent processes is instrumental in quickly identifying
software defects that would otherwise be difficult to detect [Socha 1988]. The ability to
interact with an animation by, say, changing data values has also been demonstrated to be
a valuable tool for algorithm design and analysis, whereas role playing certain actions can
support the validation of requirements specifications.

Although some prototype tools for program animation may be ready for evalua-
tion, much of this technology is still in early stages of development.
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B.2 Basic Dynamic Testing Support Toolset

Dynamic testing refers to the activity of executing a software unit, or subsystem,
with a set of input data and comparing the actual outputs against expected outputs to
identify possible defects. If an fault does occur, the execution may be halted or repeated,
or tracing information collected to aid in isolating the defect which caused the fault to
manifest. Usually, the test run is monitored to collect data on the number of times partic-
ular control structure elements are executed. Regardless of the types of test data genera-
tion used, all dynamic testing activities have some common elements. For sequential
software, the primary common elements are test drivers, debuggers, instrumentors, and
coverage monitors. There are many commercial tools, and prototypes, available in each
case.

It is vital that these common elements be provided as a basic testing support tool-
set in the SDS Software Engineering Environment (SEE). This will be the framework
within which all dynamic testing of sequential software will be performed.

The same type of support is urgently needed for dynamic testing of concurrent
and real-time SDS software. While the same support functions are required, these tools
must address some special concerns not applicable for sequential software. Concurrent
software, for example, contains additional control mechanisms that must be reflected in
coverage measures, the interaction of the concurrent processes must be addressed by the
test driver, and a debugger needs to be able to halt all processes at the same time. (The
problem of indeterminism that results in a lack of execution reproducibility is dealt with
in Section B.7). The primary issue for real-time software is that of interference. The
addition of extra code for instrumentation or debugging purposes will impact the timing
characteristics of the code under test and, therefore, the 'real' software is not being
tested. This is an area requiring additional research and development. While some of the
elements needed to support the testing of of concurrent software are ready for evaluation
and demonstration, research is required before a full set of basic testing support for con-
current software can be made available.

In addition to the necessary support for dynamic testing of SDS software pro-
ducts, an automated problem reporting system is required to support all testing activities.
A problem reporting system serves several purposes. Its primary usage is to record the
faults or failures that occurred in all testing activities, together with the defect(s) that
gave rise to each fault or failure. This information is typically supported by a defect clas-
sification and the status of the activities associated with correcting the underlying defect
and subsequent retesting of the product in question. Problem information also is valuable
for monitoring overall software quality. For example, the Air Force Systems Command
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(AFSC) recommend that the trend in software defect density be used to assess readiness

to proceed with the development phase, or for government acceptance of software, and
to identify defect-prone software components that require special handling [AFSC 1987].

In addition to recording and reporting on defects, general information about test-

ing activities should be kept to support controlling the testing process. For example, the
AFSC propose using data on the tests scheduled, the tests passed, and unresolved prob-

lem reports to monitor testing progress [AFSC 1986]. Information on prior tests also is

needed to support regression testing (see Section B.17). Finally, testing data and prob-

lems reports provide a source of insight into the effectiveness of the software develop-
ment and testing activities that can be used to identify weak points in the development

process and to evaluate new techniques.

B.3 Behavior Analysis

In general terms, behavior analysis is concerned with comparing the intended

software behavior with the actual behavior. Static forms of behavior analysis for sequen-

tial and concurrent software are discussed in the sections on sequence analysis and static
concurrency. Here the discussion focuses on dynamic behavior analysis where informa-

tion ranging from functional requirements to background knowledge (such as the domain
of values a program unit operates on) is captured to serve a variety of purposes

throughout the software development process.

In the case of SDS, for example, behavior analysis could be used to support

software requirements analysis by constructing formal specifications for software com-
ponents from informal requirements and analyzing these for consistency, completeness,
and compatibility with the specifications of other components. If formal specifications are
expressed in a language that is executable or symbolically interpretable, they can support
rapid prototyping for early prediction of software behavior. During implementation,
verification techniques can be used to check code products for consistency with their for-
mal specifications, which may serve as an initial implementation to be refined into execut-
able code. Another advantage of formal specifications lies in their ability to be automati-
cally transformed into runtime consistency checks. Such checks offer the potential to
increase the effectiveness and productivity of software testing by automating certain types
of software testing and debugging. They also can be used to automate the construction of
self-testing software to promote software fault-tolerance.

One of the most advanced research efforts into behavior analysis is being per-
formed by the Program Analysis and Verification Group of the Computer Systems
Laboratory at Stanford University. This effort began in 1980. It has focused on the
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development of wide-spectrum languages for describing the intended behavior of both

system software and hardware and the implementation of that behavior. Three languages

have been developed. Anna is an extension of the Ada programming language and is

used at the program unit level. The Task Sequencing Language (TSL) provides for speci-

fying sequences of interactions between tasks in Ada software, these are included with

the Ada text and monitored during software execution. The Hardware Design Language

(HDL) combines concepts from Anna for software specification with features in the

VHSIC Hardware Description Language for hardware specification. Prototype tools to

support application of both Anna and TSL are available.

B.4 Control Flow Testing

The only 'formalized' testing technique in wide-spread use is structural, control

flow testing. It provides test data adequacy criteria as a measure of the coverage of

dynamic testing. The only criteria in common use correspond to a requirement to execute

all program statements, branches, or paths at least once in the course of testing. They

apply to the units of a sequential program. Unfortunately, while the all-statements and

all-branches criteria are not very discriminating in terms of defect detection, the all-paths

criterion is infeasible. Several alternative control structure criteria have been defined to

provide a hierarchy of criteria which include coverage measures lying between the all-

branches and all-paths criteria. One example of such an alternative is the set of criteria

based on Linear Code Sequence and Jump (LCSAJ) blocks within a program [Hennell

1976, Ural 1988, Wu 1987]. Various studies have demonstrated the increased cost-effec-

tiveness offered by such alternative criteria. Even so, they have yet to be brought into

common practice. In addition to unit testing, test data adequacy criteria provide a valu-

able mechanism for guiding integration testing. Although various sets of criteria

corresponding to the requirement to execute the parameters in each unit interface with

different values have been proposed, these have also failed to make the transition into

common practice.

Research is being conducted into control-based test data adequacy criteria to

support the dynamic analysis of concurrent software [Taylor 1986]. In this case, criteria

are typically based on the notion of concurrency states, where a concurrency state

displays the next synchronization-related activity to occur in each task. A synchronization

activity history, the concurrency graph, is given by the sequence of states that may occur

for a class of program executions. The coverage criteria focus on concurrency state cov-
erage, state transition coverage, and synchronization coverage. Requisite support

includes a static concurrency analyzer, and either a program transformation system or a
powerful run-time monitor for noting and recording the concurrency states encountered.
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Also helpful is a controllable run-time scheduler so that the execution of specified con-

currency paths can be guaranteed. This research is only beginning. As yet no prototype

tools are available.

Production-quality tools supporting the use of effective control-based test data

adequacy criteria for SDS software testing are a necessity. These will provide the basic

means for monitoring the extent of dynamic testing of sequential SDS software that is a

prerequisite for effective management of testing activities. To this end, prototypes allow-

ing the comparison of alternative criteria on realistic sequential software should be

developed. Advanced research on control-based testing for concurrent software should

be performed to provide the SDIO with a basic capability for monitoring the extent of
dynamic testing on concurrent SDS software. Care should be taken to exploit the poten-

tial consistency with static concurrency analysis, dynamic behavior analysis, and reacha-

bility analysis.

B.5 Data Flow Testing

Data flow testing reflects the intuition that the path from a variable assignment to

its use must be executed to provide confidence that the correct value was assigned to that
variable (Frankl 1988]. In a similar way to traditional control structure criteria, data flow

criteria can be used to assess the adequacy of test data or to generate test data. Theoreti-
cal and empirical studies have shown, however, that certain data flow criteria are able to

detect more defects than the control-based all-branches criterion. Data flow testing is a
well developed technology that can be applied to detect defects both within a program

unit and between units. It can be applied in an incremental fashion which allows highly

efficient application during regression testing. The theoretical and empirical cost of vari-

ous data flow criteria has been investigated [Bieman 1989]. Over recent years several pro-
totypes tools have been developed to apply data flow testing to Fortran, Pascal, COBOL,

and sequential Ada code.

Data flow testing provides additional measure of test data adequacy that offer
more reliable SDS software than can be acquired through structural control-based testing

alone. A production-quality tool to apply intra- and interprocedural, incremental data

flow testing to sequential Ada software should be developed. Research to extend data

flow testing to concurrent Ada software should be undertaken.
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B.6 Dependency Analysis

Dependency analysis is a static analysis approach to capturing the dependencies
between different entities in design and code products. These dependencies reflect both
direct and indirect relationships between program units and may be represented by, for
example, a call tree, a call matrix, and a transitive closure of the matrix. In addition to
dependencies at the program unit level, dependencies between the blocks within a pro-
gram unit may be identified. Dependency information is primarily used to support ripple
effect analysis (see Section B.18), and to monitor the testing of modified programs.

This a basic capability that will be useful to support SDS software testing. One
major effort in the development of tools to present and analyze software dependencies is
being performed as part of the Maintenance Assistant project at the Purdue/Florida
Software Engineering Research Center.

B.7 Deterministic Execution Testing

The prime cause of difficulties in the dynamic analysis of concurrent software is
the inherent execution indeterminism which means that two executions of the same
software with the same inputs may behave differently. Consequently, the traditional
dynamic approach of executing a program once with each input can fail to detect many
concurrency-related defects. Moreover, an execution which does reveal a defect cannot
be repeated to facilitate determining the cause of that defect and, subsequently, to ensure
that it was corrected properly. Deterministic execution testing provides a way to capture
the synchronization behavior of a concurrent program and to reproduce this behavior as
necessary. As such, it provides a foundational framework for concurrent software test-
ing, particular test data generation and test data adequacy assessment schemes can then
be employed within this framework.

Some insight into the collection of synchronization information and its use to
replay a particular execution is being performed [Tai 1989a, Tai 1989b], though as yet no
prototype tools are available. More research is needed in several areas. For example, to
determine how careful identification of the impact of a software modification on the syn-
chronization behavior might support efficient regression testing.

The ability to reproduce an execution as required is a fundamental capability for
any testing of concurrent software. Moreover, with this capability, some existing tech-
niques for dynamic analysis of sequential software can be applied to concurrent software.
As such, this technology should, ultimately, be included in the SEE basic testing support
toolset.
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B.8 Domain Testing

Domain testing strategy has been developed primarily to detect errors in software
control flow [White 1986]. The control flow statements in a program partition the input
space into a set of mutually exclusive domains, each of which corresponds to a particular
program path and consists of input data points which cause that path to be executed.
Domain testing uses geometric analysis to generate test points to examine whether a
domain error has occurred. If so, one or more of these boundaries will have shifted, or
else the corresponding predicate relational operator has changed.

Domain testing offers an advantage over many dynamic analysis techniques in its
ability to test the absence of certain defects, rather than merely their presence. As such,
it would enable the confidence in particular, limited aspects of SDS software correctness
to be stated in terms of a known error bound.

This technology has not yet advanced to the point of a practical testing technique.
One of the difficulties is the high computation cost incurred. Recent research has investi-
gated making cost-effectiveness trade-offs in the accuracy of error bound measures by
adjusting the number of testing points, and their geometric positions, that are used [White
1988].

B.9 Fault-tree Analysis

Software Fault Tree Analysis is a static analysis technique for safety-critical,
real-time software. In traditional, system Fault Tree Analysis a hazard is specified and
the system is then analyzed in the context of its environment and operation to find credi-
ble sequences of events that can lead to this hazard. The general approach is to assume a
safety-related fault has occurred and then work backward to determine the set of possible
causes [Leveson 1983]. A fault tree built down to the software interface defines the high
level requirements for software safety in terms of the software behavior that could
adversely affect system safety. Software Fault Tree Analysis is then applied at the design
and code level to identify safety critical items and conditions under which fault-tolerance
and fail-safe procedures should be initiated.

With a system the projected size of the SDS, it would be a formidable task to
identify all possible unsafe states. Yet Software Fault Tree Analysis may offer substantial
benefits for critical SDS software components. In the current phase of the SDI program,
it can be used in conjunction with a system simulator to examine the interfaces of the
software fault tree to determine appropriate simulation states and events. For actual SDS
software, it can guide the application of fault-tolerance procedures such as N-version
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software and recovery blocks, and the use of run-time checks to detect hazardous
software states. It also can support testing by identifying critical functions and test cases.

This technology is ready for evaluation and demonstration. Prototype tools for
generating software fault trees from Ada code are being developed as part of Murphy
[Rolandelli 19861, a product of the UCI Safety Project.

B.10 Functional Testing

Functional testing refers to a class of dynamic analysis techniques that usuallycan
be applied to all types of software regardless of implementation characteristics such as
concurrency. They do not consider the internal software structure, but base test data gen-
eration on the functional requirements. Although functional testing techniques can be
applied at all levels of software testing, their importance largely derives from the fact that
they are one of the few approachessuitable for system and acceptance testing.

The most widely used technique is equivalence partitioning. This technique
addresses the problem of trying to select the subset of all possible inputs thathave the
highest probability of finding the most faults [Myers 1979. The software input domain is
partitioned into a finite number of equivalence classeswhere, it is assumed, a test of a
representative value of each class is equivalent to a test of any other value. The minimal
set of test data covering all equivalence classes is developed by selecting test cases that
invoke as many different input conditions as possible. Boundary value analysis is a varia-
tion on equivalence partitioning where values in both input and output equivalence classes
are selected to test the edges of each class. Another variation, cause-effect graphing,
explores combinations of input conditions by partitioning the output domain into causes
corresponding to particular effects. The different classes, and links between them, are
expressed in a combinatorial logic network called a cause-effect graph. The dependen-
cies thus revealed are used to derive appropriate test cases.

Functional testing is needed for SDS software. Although there is some evidence
of the use of tools to support its practical application, see [Solis 1985], more automated
support is needed to facilitate effective and productive functional testing. The introduc-
tion of formal specification languages offers one avenue for increased automated support.
Here some researchers are looking at the use of formal grammars developed from a for-
mal specification to allow random generation of implementation-independent test cases
or the application ofsystematic testing strategies such as boundary value analysis [Duncan
19811. Others are investigating the use of algebraic specifications [Gannon 1981, Cho-
quet 1986].
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B. 11 Interface Analysis

Describing the major modules and their interaction is the primary concern of
architectural software design, while maintaining correct and consistent interfaces is a cru-
cial part of coding and maintenance activities. Even programming language like Ada,
which allows more detailed specification of program unit interfaces than is usually avail-
able, do not support describing the relationships among components with sufficient accu-
racy. Additional mechanisms for describing the relationships between software com-
ponents are needed to support effective analysis on the consistency and completeness
within and among system components, and on changes to the interface relationships
resulting from a software modification. Recent advances have developed techniques for
effective interface analysis which, unlike traditional approaches which must be delayed
until the entire system is completed, can be performed on incomplete products.

For systems such as the SDS, controlling component relationships will be an
extremely challenging and critical task and one that requires substantial automated aid.
Tools to provide this aid must be provided. The Precise Interface Control (PIC) system is
one example of a promising approach. AdaPIC is a particular instantiation of PIC for
Ada-based development environments [Wolf 19861.

B.12 Mutation Analysis

Mutation analysis is a fault-based dynamic analysis technique capable of demon-
strating the absence of a specified set of code defects [DeMillo 1989]. It is based on the
"competent programmer hypothesis," which assumes that if the program being testing is
not correct, it differs from a correct program by, at most, a few small errors. Mutation
analysis allows the user to determine whether a set of test data is adequate to detect these
defects. The technique involves constructing a collection of mutants of the software
under test. Each mutant is identical to the original program except for a single syntactic
change (e.g., replacing one operator by another). The mutants are executed on the same
set of test data. Those which produce different output than the original program are said
to be "killed," that is, the test data was adequate to find the errors that these mutants
represent. Live mutants indicate that either the test data is inadequate or the mutant is
equivalent to the original program. More test data can be added in an effort to kill none-
quivalent mutants. The adequacy of a set of test data is measured by a score based on the
percentage of nonequivalent mutants killed.

The value of mutation analysis lies in its ability to assure the absence of certain
defects, not merely their presence. In terms of SDS software, this capability allows better
understanding of the effectiveness of some testing activities and, hence, increased
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confidence in the software.

Prototype tools for mutation analysis are available for both FORTRAN and C.

The major problem with this technique arises from extensive computational resources

needed to execute each mutant on each test case, where the number of mutants required

for a test program is bounded by the square of the number of references to variables and

constants. In an effort to control this high cost, researchers are investigating the uses of

parallel machines to support its implementation [DeMillo 1988, Krauser 1986].

Researchers are also investigating the application of mutation analysis for automated test

data generation.

B.13 Performance Analysis

During design activities, performance analysis can be used to predict perfor-

mance attributes of software prior to its implementation [Gilkey]. This requires modeling

the significant structural elements of a system and it is usually necessary to consider the
effect of environmental factors such as data dependency, competitive effects, and

memory contention. Methods for the performance analysis of designs have been based on
timed Petri-nets, abstract data types extended with performance information, and state

models supported with a probabilistic grammar-based model of the input. For time criti-
cal concurrent processes, a rapid simulation can be developed to provide quick identifica-

tions of time critical regions and an understanding of model behaviors that allows the
designer to tailer the model for the best timing performance prior to its implementation.

The key uses of performance analysis of code products are to guide program

optimization and to assess the maximum execution time of a program [Lopriore 1989].

Although a fundamental theorem in the theory of computability implies that it is not pos-
sible to determine an upper bound on the running time of a program in general, it can be

achieved for broad categories of interesting programs such as loop programs. A variety
of approaches for performance analysis of programs have been proposed. One of the
early ones uses a mechanized analysis for deriving a closed-form expression of program

execution time expressed in terms of size of input. Later extensions to this approach con-
sider the problem of finding efficient ways to determine, given the values for the input
variables, the values of various program performance indices. In another approach the

notion of a call-return tree is used to describe the dynamic calling relationship of the pro-
cedures and functions in a program execution, then to compute the live times and execu-

tion times of the various calls. It can also be used to compute additional behavioral

metrics such as the depth and height of a call and the number of direct and indirect calls
generated from any point [Kundu 1986]. Alternatively, an engineering-oriented
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performance model of a computation can be developed by extending the concept of a
computation structure to cover the performance costs appropriate to software modeling.
Such a model can cater for multiprocessors configurations, and the evaluation of both
time and space parameters for alternate realizations.

In the limited domain of compiler performance analysis, benchmarking is a com-
mon method of evaluating performance. It allows comparing the relative efficiencies of
compilers and their operating environments, and comparing the size and execution speed
of generated machine code. Halstead's theory of software science has been used to
describe the compilation process and generate a compiler performance index [Shaw
1989]. Here a nonlinear model of compile time is estimated with a fundamental relation
between compile time and program modularity. The research suggests that the discrimina-
tion rate ui a compiler is a valuable performance index preferable to average compile
time statistics.

The primary importance of performance analysis for the development of SDS
software will be in helping software engineers to make decisions about design alterna-
tives. It is critical that these decisions are made in a timely manner, efforts to force an
implemented system to meet performance requirements not allowed for in a faulty design
are not only wasteful of resources, but are rarely fully successful. Of course, performance
analysis is also valuable during coding activities, and to assess the potential performance
impact of proposed modifications (see Section B. 19).

While technology for performance analysis of sequential code products is ready
for transition into practice, its application to concurrent software is still under research.
While some prototype tools for performance analysis of designs have been developed,
these are mainly used as research vehicles and few are ready for evaluation.

B.14 Profiling

Dynamic program measurement, commonly known as profiling, is a valuable tool
in understanding software efficiency [Bentley 1987]. By measuring the actual behavior of
programs during execution, tuning efforts can focus on those components that account for
the significant part of the execution time. Traditionally this is done by inserting counters
into programs either before compilation, during compilation, or during assembly. Timing
information is then collected via interrupt-driven sampling or, alternatively, a per-process
high precision timer in the underlying architecture. Another type of profiling involves
monitoring the execution of a program to gather relevant statistics. This is particularly
useful for analyzing a program's interprocess dependencies and providing a picture of
what happened during the execution of distributed software. Perhaps the most advanced
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research in this areas is the investigation of profilers for large-scale, multiprocessors,

such as shared-memory and hypercube machines, where a dynamic, fine-grain characteri-

zation of parallel program executions based on a partial order of accesses to shared
objects has been developed [Francioni 1988].

Profiling is a basic capability that should be available to support SDS software
testing. Profiling tools should be integrated with tools such as an interactive debugger, a

graphical execution browser, and performance analysis packages to provide powerful

support for interactive analysis of the behavior of SDS software.

B. 15 Random Testing

Random testing is one of the primary techniques for acceptance testing, the other
being functional testing, see Section B.10. It is based on the idea of sampling for faults
and can both lead to the detection of defects and providea software reliability measure.
In this latter case, the number of failures in a set of test data is related to a reliability

measure via a probability distribution function. The probability distribution function
depends on the way test data is chosen, which is randomly generated from either a uni-
form distribution of the software input domain or from the operational profile. Although
the effectiveness of random testing has been questioned, recent studies have demon-
strated its value [Duran 1984]. In particular, random testing has been shown to be as
effective, if not superior, in defect detection ability to methods based on input partitioning
[Hamlet 1988]. Additionally, once the input domain or operational profile is determined,
generation of test data is usually much easier and cheaper than with other test data gen-
eration strategies.

Random testing will undoubtedly be used in the course of testing SDS software.
Its value, however, is dependent on the accurate identification of the input domain or
operational profile which, in turn, depends on the ability to predict the actual operating
environment. This is a difficult task at best and, in some cases, may not be possible. The
use of random testing should be supported by some method of assessing the accuracy
underlying the selection of test data. This accuracy can then be confirmed, or updated, as
data is collected from actual SDS operation.

B.16 Reachability Analysis

Reachability analysis is a form of static concurrency analysis where the behavior
of a set of concurrent processes is represented by a state-transition graph. The analysis
starts with constructing an abstract representation of the system which is used to construct
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a representation of the set of possible behaviors, called a reachability graph. The reacha-

bility graph is checked against a specification of acceptable behaviors, and violations of

the specification are reported. Like many techniques in this class, reachibilit, qaalysis

can be computationally expensive since the size of the global model -"i,.a y grows as the

product of the sizes of individual process models. These models typically highlight the

synchronization structure at the expense of other execution details which may be ecst-ntial

to the correctness of the software and, as a result, the analv;-_ ,iay report spurious
errors.

The potential value of reachability analysis for testing of SDS software lies in the
verification of properties of the synchronization structure of concurrent software. In this

context, it provides the same level of assurance as formal verification. Thus, it offers a
valuable degree of confidence in the correctness of this aspect of ccncurrent software.

Some prototype reachability analysis tools are ready for evaluation. One promis-

ing example is provided in the Concurrency Analysis Tool Suite (CATS) being developed
as part of the Arcadia effort [Young 1989]. Here analysis is applied on state-transition
graphs derived from Ada code. CATS provides checking of two types of sequence con-

straints. The first type is freedom from deadlock. The second type consists of additional

constraints explicitly specified by user by embedding temporal logic assertions in the
software.

B. 17 Regression Testing

Regression testing is the activity of rerunning previous tests on a piece of software
to assure that a modification to that software has not introduced any new defects. In fact,

regression testing is the one area where software reuse has been successfully practiced for
many years. Of course, reuse of tests can only be accomplished if the necessary details

are recorded (see Section B.2).

Although the ability to apply existing tests to a piece of modified software is very
valuable, it is not generally necessary to apply all previous tests. If advances in data flow

and path analysis which enable accurately determining the scope of effect of a modifica-
tion are exploited, then only those tests that address the affected scope of a modification
need be applied (for example, see Section B.6). To this end, for each modification, exist-

ing test cases can be grouped into three basic classes: reusable, obsolete, and changed.

Of course, new test cases may be required as well.

Regression testing undoubtedly will be widely used in the course of both develop-

ing and supporting SDS software. The availability of efficient regression testing tools
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promises substantially savings in these testing costs.

Tools for basic regression testing have been available for over a decade. Although
some of the prototype tools for particular, advanced testing techniques support the iden-
tification of the scope of a software modification, as yet there are no general tools for effi-
cient regression testing. Some ongoing research which is addressing the test case selection
problem, and the related problem of updating test plans, is being performed at the
University of Alberta [Leung 1988]. This work also proposes a direct measure for
software modifiability in terms of a regression number that reflects the number of test
cases affected by a single instruction change.

B.18 Ripple Effect Analysis

It has become apparent that software maintenance cost dominates the total
expense of computer software. Among the many activities of software maintenance,
identification of the logical ripple effect and elimination of inconsistencies resulting from

a software modification are of significant importance. Logical ripple effect analysis can
be applied in two ways. First, it identifies those portions of a program that are potentially
impacted by a software modification and which must be retested after a modification has
been performed [Wilde 1987]. Secondly, it provides a basis for quantitative estimation of
program quality in terms of logical stability, which represents the resistance to the poten-
tial logical ripple effect. Ripple effect analysis may be applied to source code directly or a

graph model of a program.

Ripple effect analysis offers valuable assistance for SDS software development
and support. While ripple effect analysis traditionally identifies the potential ripple effect
on the logical aspect of program behavior, it can also be applied to assess the effect on
performance behavior [Chen 19871. This would be extremely useful for distributed SDS
software.

Technology for basic logical ripple effect analysis is ready for evaluation and
demonstration. There are techniques to identify all potential performance ripple effects
during maintenance activities, but research into developing techniques to determine the
actual effect of an identified ripple effect on a system is only just beginning. Investiga-
tions into measures of logical stability that can be applied during design to provide an
early indication of likely modifiability are also in their early stages.
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B.19 Sequence Analysis

The discussion here focuses on static sequence analysis of sequential software.
Static sequence analysis for concurrent software is reviewed under Static Concurrency
Analysis, whereas dynamic methods for examining the sequencing of events are discussed
under Behavior Analysis.

Sequence analysis was initially introduced as a method of examining software for
a fixed set of anomalies in the sequence of events. The leading example of this early work
is DAVE, an automated tool which used static data flow analysis to search for erroneous,
or otherwise interesting, sequencing in the definition and handling of data variables
[Osterweil 1976]. More recently, technology has advanced to allow flexible sequence
analysis where the user can specified the sequence constraints of interest. The primary
example here is the Cesar system [Olender 1989]. Again based on data flow analysis, the
user specifies sequence constraints in the language Cecil, Cesar then analyzes a code pro-
duct for conformance to these constraints. Currently providing programmable, inter and
intraprocedural sequence analysis for Fortan programs, additional tools to support Ada
and C are under development.

Although static analysis is unable to detect the range of defects that can be identi-
fied through dynamic testing, and is often computationally expensive, it is invariably
requires fewer human resources than dynamic analysis. Another advantage of static
analysis is its ability to detect the absence of certain defects, not just their presence. As
such, sequence analysis may provide for reducing the cost of SDS software testing by
allowing the detection of some program defects before resorting to more expensive
dynamic testing and increasing software quality.

Technology for flexible sequence analysis still needs refining. Evaluation of the
prototype Cesar system would, however, provide useful insight into the likely near-term
cost-effectiveness of this technology.

B.20 Software Inspections

Software inspections are a manual, formal review technique that improves
software quality while, at the same time, reducing development costs. They can be
applied to products at all stages of software development, regardless of design issues such
as concurrency. Inspections have proven to be capable of finding 60-90% of software
defects. In practical development efforts they have been found to reduce total develop-
ment costs by as much as 25%, while leading to the delivery of defect-free software
[Fagan 1986].
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The value of software inspections for testing of SDS software cannot be ques-
tioned. In some cases, they will be the only well-defined testing technique that can be
applied to a particular SDS software product. Moreover, since they can be applied to all
software products, inspections are able to detect defects as close to their point of inser-
tion as possible, thus minimizing required rework after a defect is identified.

The inspection process is ready for transition into daily SDS software develop-
ment practice. It should be required for all requirements, design, and coding products,
including test plans and test cases.

B.21 Static Concurrency Analysis

The term concurrency analysis refers to examining software to determine whether
particular anomalous sequencing events, such as deadlock, may occur. This type of
analysis is usually performed statically to provide identification of all possible
occurrences of the given sequencing errors. The difficulty in determining whether a par-
ticular set of sequencing events is a feasible set, however, may result in the detection of
spurious sequencing errors. (Reachability analysis is a special-case of static concurrency
analysis, see Section B.16.)

Static concurrency analysis is by no means new [Apt 1983c]. One group of
researchers is investigating a version of this analysis termed constrained expression
analysis [Dillon 1988c]. Here a design is translated into formal representations, con-
strained expression representations. The behavior of concurrent software is treated as
sequences of events. By associating an event symbol with each event the possible
behavior can be regarded as a string over a alphabet of event symbols. The analysis then
proceeds by determining whether a particular event symbol, or pattern of event symbols,
occurs in a string representing a possible behavior. Prototype tools for the Ada-based
Constrained Expression Design Language (CEDL) have been developed as part of the
TEAM effort. These tools are intended to support analysis of both design and code pro-
ducts. Static concurrency analysis based on a Petri-net representation of software are
also being investigated [Shatz 1988].

Static concurrency analysis is prerequisite for rigorous testing of concurrent SDS
software. It is the only way of guaranteeing that particular concurrency-related faults will
not occur. Unfortunately, existing prototypes are largely research vehicles. It is doubtful
that any prototype tools ready for evaluation and potential productization are currently
available. Further research to extend static concurrency analysis to identify additional
types of scheduling and timing problems is needed [Avrunin 1989b], in particular for
analysis of concurrency processes that are distributed across a number of machines.
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B.22 Symbolic Evaluation

Symbolic evaluation is a necessary element of many testing activities [Clarke
1985]. The basic idea is to allow numeric variables to take on 'symbolic values' as well as
numeric values. A symbolic value is either an elementary symbolic value or an expression
in numbers, arithmetic operators, and other symbolic values. The symbolic evaluation of

a path is carried out by symbolically evaluating the sequence of assignment statements in
the path. This can be used to reconstruct the logic and computations used in a program to
aid in determining the correctness of outputs. The branch conditions which occur in con-
ditional statements can be symbolically evaluated to form symbolic predicates. The sym-
bolic system of predicates for a path can be constructed by symbolically evaluating both
assignment statements and branch predicates during evaluation of the path and consists
of the sequence of symbolic predicates that are generated by the evaluation of the branch
predicate. It can be used to assist the user in constructing test data since it describes the
subset of the input domain that causes that path to be executed. The symbolic system of
predicates also can be used in formal verification of program correctness.

The basic technology for symbolic evaluation is ready for transition. It offers the
most benefit, however, when integrated with other testing techniques. While some appli-
cations are ready for evaluation and demonstration, others require additional research.
An example of the first case is the integration of symbolic evaluation with static con-
currency analysis [Young 1988]. The use of symbolic evaluation for fault-based testing is
an example of an application requiring further investigation [Morell 1988]. The develop-
ment of a highly efficient symbolic evaluation system that can be integrated appropriately
with various testing approaches offers increased effectiveness for many areas of SDS
software testing.

B.23 Timing Analysis

In a real-time software system, it is necessary to ensure that stringent timing
requirements are satisfied. Since most time-critical software systems interact with physi-

cal processes in the external world and a model of the external world is included, at least
implicitly, in the software, it is also necessary to guard against an imperfect execution

environment which may violate these design assumptions. The analysis of real-time sys-
tem depends on the specification of expected real-time behavior, against which the
behavior in the real execution environment can be compared. This comparison can begin
as soon as the system specification is available and be refined through subsequent design
and coding activities.
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SDS software will be subject to timing constraints. Indeed, it is probably the larg-
est real-time system ever planned for development and the capability to test the timing
behavior of the software throughout its development process is critically needed.

While researchers have begun pay attention to the problems of timing analysis
over the last few years, much work remains to be done. At the software specification and
design levels, program level, few languages include support for explicit specification of
timing constraints. Consequently, some researchers are examining the use of timing
assertions to allow the derivation of performance conjectures which are proved, or
analyzed, against the system specification [Auernheimer 1986, Jahanian 1986]. Program-
ming languages are similarly lacking. Here researchers are investigating the use of
extended forms of temporal logic to express the necessary information so that the
expected timing behavior can be compared with the actual behavior in the practical exe-
cution environment [Razoukk 1988].
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